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Neurodegeneration and Parkinson’s Disease
Neurodegenerative diseases are a major cause of disability, suffering and health care costs [1]. Now
that our population is aging [2] we will see an increase in the number of patients suffering from
these diseases as age is the largest risk factor [3, 4]. Relatively common diseases are Alzheimer’s
Disease and Parkinson’s Disease (PD) but more rare diseases include Amyotrophic Lateral Sclerosis,
Creutzfeldt-Jakob Disease (‘mad cow disease’) and Huntington’s Disease [5]. Despite having different
molecular origins, disease progression and symptoms, these diseases are all chronic, progressive and
thought to be caused by specific protein being present in an aberrant conformation (structure/shape):
they are all protein misfolding diseases (PMDs) (see Chiti and Dobson, 2006 for a review [6]).

PD was first described by James Parkinson in his work of 1817 ‘An Essay on the Shaking Palsy’.
In it he describes the history of the condition and several case studies [7]. He states how at that
point in time the precise nature of the disease is not understood but ‘it ought not to be considered
as one against which there exists no countervailing remedy.’ Two centuries later our knowledge on
the nature of the disease has vastly increased with symptomatic treatments available but sadly no
curative treatment is available as of yet.

PD is progressive and characterised by resting tremor, bradykinesia (slowness of movement)
and rigidity and loss of postural reflexes (needed for maintaining posture, balance and fluidity of
movement) and can be accompanied by a plethora of additional clinical features such as cognitive
neurobehavioral abnormalities and sleep disorders (reviewed by Jankovic et al. 2008 [8]). After 20
years of suffering from PD, 80% of surviving patients show dementia [9]. Disease onset is generally
between 55-75 years of age [8] but often under age 50 for certain hereditary forms of PD [10].

PD causes death of neuronal cells and is thus called a neurodegenerative disease [11, 12]. The
disease is characterised by the presence of clusters of material inside the cell which are called Lewy
Bodies. These clusters are mainly composed of the protein α-synuclein (AS) (reviewed by Wak-
abayashi et al. 2013 [13]). The current view is that these clusters may not be harmful to neurons
but instead might be protective by trapping harmful molecular structures [14, 15].

Protein misfolding and aggregation
PMDs are characterised by the misfolding and aggregation of native protein (which is the state of
the protein in which it is properly folded into its functional conformation) leading to either a gain of
toxic function and/or loss of physiological function of the protein at hand [16].

Proteins are macromolecules made up of amino acids. Proteins are important structures for life as
they perform many crucial functions inside as well as outside of cells. There are twenty two different
naturally occuring amino acids, each with a different structure. The number of amino acids and
the order in which they are linked together to form a protein determine the structure of the protein
and thus its function. Hydrophobic (‘water fearing’) patches of protein are usually buried inside
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the functional shape of the protein, whilst polar (charged) residues are exposed to make the protein
soluble in water [17, 18]. However, misfolding into a non-native partially or globally unfolded state
can cause exposure of hydrophobic patches which makes the protein less soluble and more prone to
interact with other protein increasing the odds of forming a nucleus [19]: an aggregate of protein
which is capable of misfolding and inducing aggregation of other proteins in solution [20]. Intrin-
sically disordered proteins (IDPs) are suggested to be more prone to aggregation as these do not
natively fold, which would be protective [21]. One such IDP is AS; the protein implicated in develop-
ment of PD. AS is localised at the synaptic terminal (the part of neurons where communication with
other neurons takes place) where it is suggested to have a regulatory role in transmission of signals
[22, 23]. In addition, the protein is also localised in the nucleus (the large central organelle of a cell
where the DNA, amongst other things, is present) where it is found to co-localize with proteins that
are involved in structuring DNA, suggesting a function of AS in regulation of gene expression [24, 25].

Protein aggregation is the formation of large aggregates of insoluble protein with a high propor-
tion of what is called β-pleated sheet (a specific conformation of a sequence of amino acids), termed
amyloid [26]. Some amyloid is functional such as amyloid formed from the Curlin protein in the
bacterium E. coli where the protein is involved in biofilm formation (groups of bacteria clustering
together on a surface) and binding to host proteins [27, 28]. However, some amyloid is not functional
and instead forms fibrils/aggregates inside or outside of the cell.

For many years it was thought that amyloid fibrils (long strands of misfolded proteins linked
together) were the end product of the cascade of misfolding and aggregation and that this structure
caused neuronal cell death (discussed by Neve and Robakis, 1998 [29]). However, in the past few
years this view has changed by findings that intermediate species, called oligomers, might be most
harmful to neurons (reviewed by Kayed and Lasagna-Reeves, 2013 [30]). Tremendous effort has been
put into unraveling the different processes involved in protein misfolding and aggregation.

The protein aggregation cascade
Currently, several different types of protein aggregates and mechanistic steps have been identified
which are either on- or off pathway from soluble monomeric protein (a single molecule of protein
in solution) to amyloid fibrils, outlined in Figure 1: Monomeric protein (structure 1) may interact
to form dimers and multimers/oligomers (consisting of two or more protein molecules respectively).
Oligomeric species can be either on-pathway to becoming amyloid [31] (structure 2) or off-pathway
[32, 33] (structure 3) (discussed by Bemporad and Chiti, 2012 [34]) and these oligomeric structures
have been implicated to be the molecular species causing cell death through disruption of membranes
(which are components of the cell) [35–38]. The oligomeric structure may undergo a conformational
change and form a nucleus (structure 4) giving the aggregate properties to propagate by addition
of monomers to the growth ends. However, it has also been suggested a monomer could even be
considered a nucleus if it acts as a template for growth of amyloid (discussed by Bemporad and
Chiti, 2012 [34]). The structures formed by elongation of the nucleus are sometimes called pre- or
proto-fibrils and are on-pathway to forming mature amyloid fibrils (structure 5) [39, 40] via a process
called ‘maturation’ (omitted from the schematic illustration for simplicity) [41, 42].
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Figure 1: Amyloid formation takes place via several steps. Schematic representation of protein aggregation through
several steps from soluble, functional monomeric protein (1) to oligomers (2 and 3), formation of a nucleus (4) and
elongation of said nucleus into fibrils (amyloid) (5). Surface catalysed nucleation (6) (where soluble protein interacts
with fibril surfaces to form oligomers or nuclei) and fibril fragmentation (7) might also take place and can greatly
enhance the conversion rate of soluble protein into amyloid. Formation of amorphous aggregates (8) (which do not
have a defined structure like amyloid does) can also occur depending on experimental conditions.

Under certain conditions, monomeric protein may interact with the fibril surface, resulting in
formation of oligomers [38, 43] (at No. 6) that may go on to form amyloid fibrils. Fibrils may frag-
ment (at No. 7) either naturally or induced by, for instance, disruption of the solution by stirring
(in an experimental setting) which enhances the number of growth ends and by this, enhances initial
extension (elongation) rate and toxicity to cells as shorter fibrils appear to be more harmful to cells
[44, 45]. Amorphous aggregates (structure 8), which lack the defined structure that amyloid has, can
also form depending on environmental conditions.

Final thoughts
PD, amongst other diseases, is accompanied by misfolding and aggregation of protein which nor-
mally has a function in the body. Several different molecular steps have been identified and efforts
are made to find molecules that interfere with one or more of these steps aiming to halt or slow
down development of PMDs once diagnosed [46, 47]. One caveat is that when patients start present-
ing with symptoms, too much damage might already have been done meaning that a full or even
partial recovery might not be possible. In light of this, work is also carried out to refine diagnostic
methods aiming to diagnose people before they have developed symptoms increasing the chances of
succesful treatment. It is thus incredibly important to approach PMDs from different angles and on
different levels if we are to offer the best possible treatment to people with these debilitating illnesses.
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